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Abstract

The differentiation of embryonic stem cells into various lineages is highly dependent on the

chromatin state and gene expression patterns. To identify the lineage specific enhancers driving

the differentiation of pancreatic cells we used a previously described computational framework

called Total Functional Score of Enhancer Elements (TFSEE), which integrates multiple genomic

assays that probe both transcriptional and epigenetic states. Using TFSEE, we defined the

enhancer landscape and identified TFs maintaining multipotency of endodermal stem cells during

differentiation into pancreatic lineages. Thus, TFSEE can be used to perform multilayer genomic

data integration to uncover novel cell type-specific TFs that control lineage-specific enhancers.



Introduction

Embryonic development is a complex process during which pluripotent cells differentiate into

specialized cells of various lineages. The mechanisms operating the developmental competence

are highly complex and are dependent on the responder tissue and precise timing of signaling

cues[1]. Lineage specification is dependent on complex interaction of transcription factors and

chromatin states at enhancers. Enhancers and the transcription factors (TFs) regulating their

formation have been shown to play an important role in cell type-specific activation of gene

expression [2,3]. Although thousands of potential enhancers have been identified in cell lineages

and tissues, identification of the enhancers that are active versus inactive or poised remains a

major challenge [4]. In addition, the ability to identify the TFs acting at the numerous enhancers in

each cell type is technically challenging [5,6].

Enhancers have been shown to share several common features; such as increased chromatin

accessibility (as measured by DNase-seq or ATAC-seq) [7,8,9] and enrichment of post-translational

modification of histone tails (as assessed by ChIP-seq), including H3K4me1 and H3K27ac 

[10,11,12]. While these epigenetic features can successfully identify the location of many

enhancers across the genome, they cannot readily differentiate between active and non-active

enhancers [13,14]. Recent genomic assays have shown that enhancers tend to be bound by RNA

polymerase II (Pol II) and transcribed, producing non-coding RNAs known as enhancer RNAs

(‘eRNAs’) [15,16,17]. While the full breadth of of the enhancer RNA transcripts are unknown, we

and others have shown that enhancer transcription (as measured by total RNA-seq, GRO-seq or

PRO-seq) can be used in the absence of any other genomic information to as a predictor of

enhancer activity [16,17,18,19,20,21,22,23,24,3].

In recent years, advances in technology have facilitated the large scale functional characterization

of enhancer activity [25,26,27,28] and annotation of genome-wide binding sites of TFs in various

cell types and tissues [29,5]. However, due to countless cell types, experimental conditions and the

large number of TFs [30], integration of these independent data sets to achieve a comprehensive

analysis of gene expression and actionable predictions of TFs driving cell type-specific gene

expression can be very challenging. Furthermore, analyses that predict TF binding sites (TFBSs),

which are usually 4-12 nucleotides in length [31], using TF binding profile databases [32,33,34], fail

to consider that such sequences occur frequently by chance throughout the genome and that TF

binding is cell type specific [35]. To overcome these limitations, we established a novel method

called Total Functional Score of Enhancer Elements (TFSEE), which can be used to identify

location and activity of enhancers in any cell or tissue type together with their cognate TFs.

In this study, we aimed to understand the TF driven transcriptional programs during the time course

differentiation of human embryonic stem cells (hESC) towards pancreatic cell type [1]. This

embryonic development model allowed us to explore the spatiotemporal gene regulation during

development, by enhancers and TFs. In the studies presented herein, we provide a detailed



characterization of TFSEE and demonstrate the broader use of TFSEE to identify enhancers and

TFs during the differentiation of embryonic stem cells into pancreatic progenitor cells to uncover

cell type-specific transcription factors that control lineage-specific enhancers.

Results

Unbiased Identification of Enhancers during Pancreatic Differentiation

Enhancer identification methods using enrichment of histone modifications (e.g. H3K4me1 and

H3K27ac) [10,11,12] or by enhancer transcription [17] are quite well established. For these

analyses, we mined previously published ChIP-seq for 3 different histone modifications, in addition

to GRO-seq and RNA-seq datasets at five defined stages of differentiation: hESCs, definitive

endoderm (DE), primitive gut tube (GT), posterior foregut (FG), and pancreatic endoderm (PE)

(Figure 1A, Table S1). We identified the enhancer universe for the cell lineages in pancreatic

differentiation time course model by two methods:(1) enrichment of epigenomic marks (H3K4me1

or H3K27ac) (Figure S2B), (2) enhancer RNA (eRNA) signatures from GRO-seq (Figure S2A). In

order to avoid the complications associated with enhancer transcription overlapping promoter

transcription, we considered only the potential enhancers  3 kb away from known transcription

start sites (TSSs) of active protein-coding genes as identified by H3K4me3 [37] (Gencode version

19 annotations [38]) (Figure S3A).

For the enhancers identified using the histone marks, by method 1, we further filtered the enhancer

universe based on the enrichment of H3K4me1 and H3K27ac, (RPKM cutoff of  1 (Figure S3B

and C) for both marks in at least one cell line) and identified a set of 182,335 candidate enhancers

across all stages of pancreatic differentiation (Figure 1B). The stringent filter is necessary to reduce

false positive enhancers that could easily annotated as alternative chromatin states using

ChromHMM [39], if more histone marks were available. We then identified a set of 4,974 candidate

enhancers (Figure 1B) by method 2, using GRO-seq as described previously [20], using RPKM 

0.5 or  1 (Figure S3D and E) in at least one cell lineage. We categorized these candidate

enhancers for each cell line and found that  20% of the enhancers (histone modifications) and

25-75% (GRO-seq) were shared in each cell lineage. Additionally, the majority of histone called

enhancers are marked by only H3K4me1 (Figure 1B). These results confirm the enhancer

landscape across pancreatic differentiation reported by Wang et al.

Next we compared the enhancer universe called by histone prediction methods and enhancer

transcription based approach. We compared the overlap from histone enhancer prediction methods

(H3K4me1 or H3K27ac) to output from an enhancer transcription based approach (GRO-seq) and

found that 12% of enhancers calls based on enhancer transcription using GRO-seq data are

identified by all the of the other methods (enrichment of H3K4me1 and H3K27ac) (Figure 1C, S1A).

Interestingly, greater than 75% of the enhancers were solely identified by enhancer transcription

based approach were not called in the histone enhancer prediction method (H3K4me1 or



H3K27ac) (Figure 1C and D, S1B). Although H3K27ac and H3K4me1 might be two histone

modifications commonly associated with enhancers, these are not the only chromatin mark

involved and other modifications may be present that were not assayed for [40]. In contrast, less

than 1% of enhancers called based on enrichment of H3K4me1 or H3K27ac overlapped with the

enhancers identified by the other methods (Figure 1C). This may in part, due to the fact that

enhancer calling based on H3K4me1 or H3K27ac enrichment, yields much larger numbers of

putative enhancers (Figure 1D), many of which may be false positives or inactive as the true

regulatory elements (Figure S1C and D). Based on these findings, we decided to use the

enhancers identified using GROseq (method2) which had the greater percent of enhancers that

were called by all the three methods as an input to TFSEE model for the subsequent analysis.

The TFSEE model

The TFSEE model integrates multiple genomics assays such as, GRO-seq, RNA-seq, and ChIP-

seq, data with TF motif information to predict TFs driving the formation of active enhancers and the

locations of their cognate enhancers. The TFSEE model consists of five key data processing steps

(Figure 2) followed by a data integration stage (Figure 3). In step 1, a universe of active enhancers

across the different constituent cell types are identified based on enhancer transcription (as in

methods, n=4,974) GRO-seq or total RNA-seq (Figure S2A). One could also substitute this with the

enhancers identified using the enrichment of epigenomic marks (as in methods, n=218,731)

H3K4me1 and H3K27ac (Figure S2B). For these universe of enhancers per cell type, the genome-

wide enhancer mark and activity levels were assessed by calculating histone mmark enrichment

(H3K4me1 and H3K27ac) and eRNA transcription (GRO-seq or total RNA-seq) profiles, in step 2 of

TFSEE. Next we generate an enhancer activity matrix A  for all cell types C for the universe

active of E enhancers. We assume that the enhancer activity of each cell type is linearly correlated

to the amount enhancer transcription (GRO-seq or total RNA-seq, G), and to the epigenomic marks

(H3K4me1, M and H3K27ac, H). To reduce bias each individual enhancer enrichment is scaled

between 0 and 1. Enhancer activity can be expressed as the following formula:

 

As TFSEE was mainly designed to detect enhancer activity changes and TF-enhancer links for

each cell type, in steps 3-4 of TFSEE, the TF to enhancer links are determined by a de novo motif

search and a matrix of probability of the TF is created annotating every enhancer to TF for each

cell type. If a motif is represented multiple times for a given enhancer location, TFSEE combines

the probability of that motif into a single p-value using Stouffer method. In step 5, the expression

profile of all TF’s from step 4 was calculated from GRO-seq or RNA-seq data across all the cell

types.

The final stage integrates all the data in steps 1-5 (Figure 3) to determine TFSEE score matrix and

heatmap. First, the enhancer activity matrix A , is combined with motif prediction matrix T ,

represent scaled motif prediction p-values, T, for each enhancer E, to form an intermediate matrix

CxE

CxE ExF



product. This matrix product is entrywise combined with TF expression matrix R, from step 5, the

expression of each TF F for each cell type C, into a resulting matrix Z composed of C cell types

and F TFs. TFSEE can be expressed as the following formula:

 

TFSEE identifies lineage-specific enhancers and their cognate TFs

during pancreatic differentiation

Having globally predicting the TFSEE scores across the lineages of pancreatic differentiation, we

performed unsupervised hierarchical clustering on the enhancers predicted by GRO-seq method,

which grouped the cell types into two major clades: (1) FG, and PE (2) hESC, DE, and GT (Figure 

4A, S4A). To better understand the TF-enhancer dynamics across all differentiation stages we

clustered the TFSEE score across all differentiation stages, revealing four major categories using

enhancer transcription (Figure 4B). We examined the enrichment of putative enhancers and their

associated TFs across stages by quantifying their normalized TFSEE score. This analysis revealed

four major clusters: 1. driving early (hESC, DE) and late pancreatic differentiation (FG and PE), 2.

enriched in GT, 3. driving pre-pancreatic linage (hESC, DE and GT), and 4. driving late-pancreatic

differentiation (FG and PE) (Figure 4C). We also performed the unsupervised hierarchical

clustering on the enhancers predicted by histone enrichment alone and retrieved only three

clusters in contrast to the four clusters from enhancers predicted by GRO-seq method (Figure 

S4B). These results highlight TF-enhancers driving pre-pancreatic lineage (hESC, DE and GT),

and late-pancreatic differentiation (FG and PE), but fails to highlight any other stage specific drivers

(Figure S4C).

To investigate the the distinct roles of lineage specific enhancers and their cognate TFs that

provide a clear demarcation of enrichment between pre- and late- pancreatic differentiation, we first

examined the mRNA levels of the corresponding predicted TFs of each cluster in each of the

stages. Our analysis revealed that TFs identified in pre-pancreatic lineage show equal expression

across stages, while late-pancreatic TFs are highly expressed in FG and PE (Figure 5A, S5A)

coinciding with pancreatic induction at the FG stage (Figure 1A). Conversely, we didn’t see an

enrichment of TFs in a stage specific manner for either TFs enriched early (hESC, DE) and late

pancreatic differentiation (FG and PE) or those maintaining GT pluripotency (Figure S6A).

Next, we determined if enhancer transcription corresponding to the enriched TFs in each cluster,

using TFSEE score, correlates with the regulation of their nearby genes. To do so, we identified the

enhancers corresponding to the predicted TFs using enriched binding motif prediction, and then

determined the level of transcription for each enhancer, using GRO-seq or H3K27ac ChIP-seq,

(Figure 5B, S5B, S6B) and the nearest neighboring gene (upstream or downstream), using RNA-

seq (Figure 5C, S5C, S6C). Interestingly, transcribed enhancers exhibited stage specific

enrichment, which doesn’t correspond to the patterns found from TFSEE enrichment (Figure 5B, 

S5B, S6B). This result reflects that 1364 of the enhancers, 55% (n=2465, cluster 3) and 99%



(n=1371, cluster 4), are shared between clusters and the variation between clusters is due to

differences in TF expression and affinity to motifs. Likewise, the nearest neighboring gene for each

transcribed enhancer doesn’t exhibit stage specific enrichment (Figure 5C, S5C, S6C) due to the

vast abundance of enhancers and thus neighboring genes shared between the clusters. However,

without further high-throughput data to study promoter-enhancer linking (as measured by 4C,

ChIA-PET, or Hi-C) [41] it is difficult to understand the stage specific regulatory network.

To further understand the potential regulators of each cluster we determined a rank order

frequency distribution for all TFs within each cluster (Figure 5D and E). This analysis revealed

enrichment of HINFP, RARG, ZIC3, and SP1-like family TFs (SP1 and SP8) which are important

regulators of embryonic development [44] (Figure 5D). Additionally, the Onecut family (ONECUT2

and ONECUT3), EGR1, MITF and FOXP1 TFs are enriched in cluster 4 and have been shown to

function in pancreatic and islet cell development [48] (Figure 5E). Similar results were obtained for

comparison of TFSEE scores from different clusters using GRO-seq and Histone called enhancers

(Figure S6D and E, S5D and E).

To compare TFs enriched between GRO-seq and Histone driven TFSEE scores we compared the

TFs enriched in pre- and late-pancreatic differentiation. We found 9 and 12 TFs enriched in

common for pre- and late-pancreatic respectively. The differences in TFs that are enriched may be

due, in part, to enhancer calling using H3K4me1 and H3K27ac enrichment, yields much larger

numbers of putative enhancers, many of which may be false positives or inactive as true regulatory

elements producing more varied enriched TF motifs. Altogether, our results show that TFSEE can

be used to identify cell type-specific transcription factors that control lineage-specific enhancers

Discussion

The intricate mechanisms involved in driving the lineage specific transcriptional responses during

development remain poorly understood. In this study, we integrated a variety of publicly available

high throughput sequencing data from pancreatic lineage development to identify the potential

regulators driving the early or late pancreatic lineage development. Our analysis showed the

enrichment of the Onecut family (ONECUT2 and ONECUT3), EGR1, MITF and FOXP1 TFs in the

late pancreatic differentiation phase (FG, PE) and have been shown to function in pancreatic and

islet cell development [48]. In this process, we also provide a detailed operational description of

TFSEE, a previously published computational method [52] for identification of active enhancers

and associated cognate TFs during the time course differentiation of human embryonic stem cells

(hESC) towards pancreatic cell type. TFSEE employs multi-view clustering of multiple genomic

assays that directly models changes in the transcriptional and epigenetic states across cell-types.

This approach allowed us to directly integrate disparate data while encoding assumptions and

dependencies between data types in an interpretable and extendable model. TFSEE model gains

power by both explicitly modeling the enhancer landscape for each cell type and detecting the

enhancer activity changes and TF:enhancer links across all cell types. So far, we applied TFSEE



on transcriptional and epigenomic data from time course differentiation of human embryonic stem

cells [1,36] and a variety of breast cancer cell lines [52]. Our results show that this method can

identify cell type-specific TFs and their linked enhancers that are biologically relevant which needs

further biological validation. In particular, this method identifies TFs bound at active enhancers

which regulate gene expression patterns, supporting the biological relevance of TFSEE

predictions. In this study, we showed enrichment of HINFP, RARG, ZIC3, and SP1-like family TFs

(SP1 and SP8) using TFSEE which are known important regulators of embryonic development 

[44,45,46,47]. Additionally, the model enables novel analysis of driver TFs with limited amount of

data. The model was able to identify lineage specific TFs with as little five cell types and with only

three data types (Figure 4B, S4B). A limitation of the TFSEE method is that while the model can be

used with reduced data types for enhancer identification it fails to highlight additional subtype

specific drivers (Figure 4C, S4C) and of the overlapping clusters identified only a subset of TFs are

jointly enriched (Figure S5F and G. However, additional ATAC-seq [53], ChIP-seq or DNase-seq

data could easily be added to TFSEE and extend the model providing greater granularity on

subtype specific TF clusters, however these extended analyses were not included in this study.

Conclusions

The increasing availability of different genomic data sets provides an opportunity to perform data

integration to uncover novel cell type-specific transcription factor (TF) drivers. To facilitate

identification of these drivers we developed TFSEE, which systemically identify active enhancers

and associated cognate TFs. We showed that TFSEE can identify stage specific TFs during

differentiation of endodermal stem cells into pancreatic lineages. Collectively, our results show how

TFSEE can be used to predict molecular drivers maintaining cell type-specific function and biology.
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Material and Methods

Genomic Data Curation

We used previously published GRO-seq, ChIP-seq and RNA-seq data from [1,36] time course

differentiation of human embryonic stem cells (hESC) to pancreatic endoderm (PE). All data sets

are available from NCBI’s Gene Expression Omnibus [54] or EMBL-EBI’s ArrayExpress [55]

repositories using the accession numbers listed in Table S1.

Table S1: Description and accession numbers of GRO-seq, ChIP-seq and RNA-seq

datasets. Summary of assay and accession of raw data for time course differentiation of human

embryonic stem cells (hESC) to pancreatic endoderm (PE) used in this study. All data sets are

available from NCBI’s Gene Expression Omnibus or EMBL-EBI’s ArrayExpress. 

Assay Accessions

GRO-seq
GSM1316306, GSM1316313, GSM1316320, GSM1316327,

GSM1316334

H3K4me3 ChIP-seq ERR208008, ERR208014, ERR207998, ERR20798, ERR207999

H3K4me1 ChIP-seq

GSM1316302, GSM1316303, GSM1316309, GSM1316316,

GSM1316317, GSM1316310, GSM1316323, GSM1316324,

GSM1316330, GSM1316331

H3K27ac ChIP-seq

GSM1316300, GSM1316301, GSM1316307, GSM1316308,

GSM1316314, GSM1316315, GSM1316321, GSM1316322,

GSM1316328, GSM1316329

Input ChIP-seq

ERR208001, ERR208012, ERR207984, ERR208011, ERR207986,

GSM1316304, GSM1316305, GSM1316311, GSM1316312,

GSM1316318, GSM1316319, GSM1316325, GSM1316326,

GSM1316332, GSM1316333

RNA-seq
ERR266333, ERR266335, ERR266337, ERR266338, ERR266341,

ERR266342, ERR266344, ERR266346, ERR266349, ERR266351

Analysis of ChIP-seq Data Sets

The raw reads were aligned to the human reference genome (GRCh37/hg19) using default

parameters in Bowtie version 1.0.0 [56]. The aligned reads were subsequently filtered for quality

and uniquely mappable reads were retained for further analysis using Samtools version 0.1.19 [57]



and Picard version 1.127 [58]. Library complexity was measured using BEDTools version 2.17.0 

[59] and meets ENCODE data quality standards [60]. Relaxed peaks were called using MACS

version 2.1.0 [61] with a p-value of  for each replicate, pooled replicates’ reads and

pseudoreplicates. Peak calls from the pooled replicates that are either observed in both replicates,

or in both pseudoreplicates were used for subsequent analysis.

Analysis of RNA-seq Data Sets

The raw reads were aligned to the human reference genome (GRCh37/hg19) using default

parameters in STAR version 2.4.2a [62]. Quantification of genes against Gencode version 19 [38]

annotations was done using default parameters in RSEM version 1.2.31 [63].

Analysis of GRO-seq Data

The GRO-seq reads were trimmed to the first 36 bases to trim adapter and low quality sequence,

using default parameters of fastx_trimer in fastx-toolkit version 0.0.13.2 [64]. The trimmed reads

were aligned to the human reference genome (GRCh37/hg19) using default parameters in BWA

version 0.7.12 [65].

Kernel Density

Kernel density plot representations were used to express the univariate distribution of ChIP-seq

reads under peaks, RNA-seq reads for protein-coding genes and GRO-seq reads for short paired

and short unpaired eRNAs. The kernel density plots were calculated in Python (ver. 2.7.11) using

the kdeplot function from seaborn version 0.7.1 [66] with default parameters.

Defining Transcription Start Sites and Promoters

We made distinct transcription start sites (TSS) for protein-coding genes from Gencode version 19 

[38] annotations using MakeGencodeTSS [67]. We identified active promoters, as identified by

H3K4me3 [37]. A RPKM cutoff of  1 for H3K4me3 in at least one cell line was used to identify a

peak as an active enhancer (Figure S3A).

Enhancer calling by ChIP-seq

Calling Active Enhancers.

We built a universe of peak calls by merging the peaks from individual cell lines for histone

modifications (H3K4me1 and H3K27ac) and stratifying the boundaries to remove overlaps/

redundancies occurring from the union of all peaks. Potential enhancers were defined as peaks

that were  3kb from known TSS, protein coding genes from Gencode version 19 annotations 

[38], and H3K4me3 peaks. A RPKM cutoff of  1 for H3K4me1 and H3K27ac (Figure S3B and C)

in at least one cell line was used to identify a peak as an active enhancer. The universe of active

http://seaborn.pydata.org/


enhancers was assembled using the cutoffs noted above for each cell line and was used for further

analyses.

Motif Analyses.

De novo motif analyses were performed on a 1 kb region (  500 bp) surrounding the peak summit

for the top 10000 enhancers, using the command-line version of MEME-ChIP from MEME Suite

version 4.11.1 [68,69]. The following parameters were used for motif prediction: (1) zero or one

occurrence per sequence (-mod zoops); (2) number of motifs (-nmotifs 15); (3) minimum, maximum

width of the motif (-minw 8, -maxw 15). All the other parameters were set at the default. The

predicted motifs from MEME were matched to known motifs in the JASPAR database

(JASPAR_CORE_2016_vertebrates.meme) [33] using TOMTOM [34].

Enhancer calling by GRO-seq

Transcript calling.

Transcript calling was performed using a two-state hidden Markov model using the groHMM data

analysis package version 3.4 [17,22,70] on each individual cell lines. The negative log transition

probability of the switch between transcribed state to non-transcribed state and the variance in

read counts in the non-transcribed state that are used to predict the transcription units for the cell

lines in this study are listed Table S2.

Table S2: groHMM tunning parameters. Table summarizing the shape

setting parameters and -log transition probabilities used to predict the

transcription units for each cell lines using GRO-seq data with groHMM

method. 

Cell Line -Log Transition Probability Variance in read counts

hES 50 45

DE 50 35

GT 50 50

FG 50 35

PE 50 35

We then built a universe of transcripts by merging the groHMM-called transcripts from individual

cell lines and stratifying the boundaries to remove overlaps/redundancies occurring from the union

of all transcripts.



Calling Enhancer Transcripts.

We filtered and collected a subset of short intergenic transcripts  9 kb in length and  3 kb away

from known transcription start sites (TSSs) of protein-coding genes from Gencode version 19

annotations [38], and H3K4me3 peaks. These were further classified into (1) short paired eRNAs

and (2) short unpaired eRNAs as described previously [20]. For the short paired eRNAs, the sum

of the GRO-seq RPKM values for both strands of DNA was used to determine if an enhancer

transcript pair is expressed using a cutoff of RPKM  0.5 (Figure S3D). An RPKM cutoff of  1

was used to determine the universe expressed short unpaired eRNAs (Figure S3E). The

comprehensive of expressed eRNAs (short paired and short unpaired) was assembled using the

cutoffs noted above for each cell line was used for further analyses.

Motif Analyses.

De novo motif analyses was performed on a 1 kb region (  500 bp) surrounding the overlap center

or the transcription start site for short paired and short unpaired eRNAs, respectively, using the

command-line version of MEME from MEME Suite version 4.11.1 [68]. The following parameters

were used for motif prediction: (1) zero or one occurrence per sequence (-mod zoops); (2) number

of motifs (-nmotifs 15); (3) minimum, maximum width of the motif (-minw 8, -maxw 15); and (4)

search for motif in given strand and reverse complement strand (-revcomp). The predicted motifs

from MEME were matched to known motifs in the JASPAR database

(JASPAR_CORE_2016_vertebrates.meme) [33] using TOMTOM [34].

Generating Heatmaps and Clusters

For each cell line, the functional scores were Z-score normalized. To identify cognate transcription

factors by cell type, we performed hierarchical clustering by calculating the Euclidean distance

using clustermap from seaborn version 0.7.1 [66]. For visualization of the multidimensional TFSEE

scores, we performed t-distributed stochastic neighbor embedding analysis (t-SNE) [71] using the

TSNE function and labeled the clusters by calculating K-means clustering using the KMeans

function with the expectation-maximization algorithm in scikit-learn version 0.17.1 [72,73,74].

Nearest Neighboring Gene Analyses and Box Plots

The universe of expressed genes in each cell line was determined from the RNA-seq data using a

FPKM cutoff of  0.4 (Figure S3F). The set of nearest neighboring expressed genes for each

enhancer defined by an expressed eRNA or the enrichment of active histone marks was

determined for each cell line. Box plot representations were used to express the levels of

transcription or enrichment for each called enhancer and transcription of their nearest neighboring

expressed genes. The read distribution (RPKM) for each enhancer or (FPKM) gene was calculated

and plotted using the boxplot function from matplotlib version 2.0.2 [75,76]. Wilcoxon rank sum

tests were performed to determine the statistical significance of all comparisons.

http://seaborn.pydata.org/
http://scikit-learn.org/
https://matplotlib.org/


Figures and Figure Legends



Figure 1: Comparison of genome-wide prediction of enhancers during pancreatic

differentiation. (A) (Top) Schematic of pancreatic differentiation starting from Human embryonic

stem cells (hESCs) to pancreatic endoderm (PE). (Bottom) Depiction of epigenomic (ChIP-seq)

and transcriptional (GRO-seq and RNA-seq) profiles for each cell line used for analysis. (B)



Stacked bar chart comparing expression of candidate enhancers categorized by (Top) H3K4me1

and H3K27ac enrichment, or (Bottom) enhancer transcription (GRO-seq). (C) Stacked bar chart

comparing enhancer prediction methods in pancreatic differentiation. Enhancers were called using

enhancer transcription (GRO-seq) or by using H3K4me1 enrichment, or H3K27ac enrichment. The

percentage of called enhancers from one prediction method that overlap with enhancers called

using other methods is shown. (D) UpSet plot showing the set intersection of enhancer

identification methods shown in panel C.



Figure 2: Data Processing for Total Functional Score of Enhancer Elements (TFSEE) Method.

The TFSEE method has five data processing steps that are used to identify enhancer location and

activity and their cognate transcription factors (TFs). In step 1, epigenomic (ChIP-seq) or the

transcriptional (GRO-seq or total RNA-seq) profiles are used to generate a universe of active



enhancers across the different constituent cell types. In step 2, TFSEE calculates the enrichment

(H3K4me1 and H3K27ac) and eRNA transcription (GRO-seq and total RNA-seq) profiles under all

identified active enhancers per cell type. Cell type-specific enhancers are used as input for step 3,

where a de novo motif search is performed to identify potential TFs at each enhancer. If a motif is

represented multiple times for a given enhancer location, TFSEE combines the probability of that

motif into a single p-value in step 4. Step 5 integrates the amount of eRNA transcription (GRO-seq

or total RNA-seq) and the expression of the TFs whose motifs were predicted in step 3 and 4 for all

cell types, to provide an output of TF expression profiles across every cell type.



Figure 3: Overview of Total Functional Score of Enhancer Elements (TFSEE) Method. TFSEE

combines diverse data sets to identify enhancer location and activity and their cognate

transcription factors (TFs). An illustration of TFSEE data integration stage, taking the outputs

generated in panel A, to identify the location, activity level, and predicted TFs at each enhancer



across all cell types. (Top) All matrices represent scaled enhancer activity for each cell type in each

enhancer prediction method (G, H, and M). All matrices are linearly combined into a resulting

matrix A, to provide a total enhancer activity score. (Bottom) Enhancer activity matrix A, is

combined with motif prediction matrix T, represent scaled motif prediction p-values for each

enhancer, to form an intermediate matrix product. This matrix product is entrywise combined with

TF expression matrix R (scaled TF expression for each cell type), into a resulting matrix Z, on

which TFSEE clustering is performed.



Figure 4: TFSEE identifies cell type-specific enhancers and their cognate TFs that drive gene

expression during pancreatic differentiation. (A) Unsupervised hierarchical clustering of cell

type-normalized TFSEE scores shown in a heatmap representation. hESC (human embryonic

stem cell); DE (definitive endoderm); GT (primitive gut tube); FG (posterior foregut); PE (pancreatic



endoderm). (B) Biaxial t-SNE clustering plot of cell type-normalized TFSEE scores showing

evidence of four distinct clusters, each point represents an individual TF. (C) Box plots of

normalized TFSEE score for clusters identified in pancreatic differentiation (panel B), number of

TFs are indicated in each cluster. Bars marked with different letters are significantly different

(Wilcoxon rank sum test, ). Cluster 1, TFs associated with early (hESC, DE) and late

pancreatic differentiation (FG and PE). Cluster 2, TFs associated with GT pluripotency. Cluster 3,

TFs associated with pre-pancreatic lineage induction (hESC, DE and GT). Cluster 4, TFs

associated with late-pancreatic differentiation (FG and PE).



Figure 5: TFSEE-Predicted TFs are enriched in pre- and late- pancreatic differentiation. (A-C)

Box plots of normalized TF expression (panel A), enhancer transcription (panel B), and gene

expression for the nearest neighboring genes to active enhancers (panel C) in pre- (cluster 3) and

late-pancreatic (cluster 4) differentiation across the different cell types. Bars marked with different



letters are significantly different from each other (Wilcoxon rank sum test). hESC (human

embryonic stem cell); DE (definitive endoderm); GT (primitive gut tube); FG (posterior foregut); PE

(pancreatic endoderm). (A) TFs identified in cluster 3 by TFSEE show equal expression across

differentiation. While, cluster 4 highlights TFs highly expressed in FG and PE. TF expression as

measured by RNA-seq. Number of TFs in each cluster are in parenthesis. ( ) (B)

Enhancer transcription as measured by GRO-seq. Number of enhancers in each cluster are in

parenthesis. ). (C) Gene expression as measured by RNA-seq. Number of genes in

each cluster are in parenthesis. ( ) (D and E) Rank order of TFs enriched in the Cluster 3 and

the Cluster 4 identified using TFSEE. The top ten TFs in each Cluster are noted.



Figure S1: Enhancer transcription is a better predictor of enhancer activity and target gene

expression than other features of active chromatin. (A-D) UCSC Genome browser views of

GRO-seq, histone modification ChIP-seq and RNA-seq data showing a transcribed enhancer 

(black box with dashed line) and its nearest neighboring gene. hESC (human embryonic stem cell);



DE (definitive endoderm); GT (primitive gut tube); FG (posterior foregut); PE (pancreatic

endoderm). (A) Browser view showing a transcribed enhancer and its nearest neighboring gene

(SMAD7). The data highlights histone modifications typically enriched at enhancers (green),

however the increased transcription determined by GRO-seq (red/blue) for DE correlates to

expression of nearest genes determined by RNA-seq (orange/light green). (B) Browser view

showing a transcribed enhancer and its nearest neighboring gene (ATG5. The data highlights an

enhancer identified by GRO-seq (red/blue), however lacks typical histone modifications enriched at

enhancers (green). The increased transcription determined by GRO-seq for hESC correlates to

expression of nearest genes determined by RNA-seq (orange/light green). (C) Browser view

showing a transcribed enhancer and its nearest neighboring gene (PDX1). The data highlights an

enhancer identified by histone modifications enriched at enhancers (green), however increased

transcription determined by GRO-seq (red/blue) correlates with antisense gene (AS-PDX1). (D)

Browser view showing a transcribed enhancer and its nearest neighboring gene (RGS4). The data

highlights an enhancer identified by histone modifications enriched at enhancers (green), however

lacks enhancer transcription identified by GRO-seq (red/blue). The increased enhancer signal

determined by histone modifications for PE shows correlates to expression of nearest genes

determined by RNA-seq (orange/light green) and GRO-seq (red/blue).



Figure S2: Unbiased, genome-wide prediction of active enhancers. (A) Overview of the

computational pipeline used for the genome-wide annotation of enhancer transcripts (eRNAs) and

prediction of active enhancers using GRO-seq data. (B) Overview of the computational pipeline



used for the genome-wide annotation of and prediction of active enhancers using ChIP-seq

(H3K4me1 and H3K27ac) data.



Figure S3: Density plots of enhancer and gene expression levels across all cell types. Kernel

density plots of log-transformed RPKM and FPKM values for determining active enhancers and

genes. The dashed grey line represents the minimum expression cutoff. (A) Density plot of

H3K4me3 (promoter mark) cutoff RPKM . (B) Density plot of H3K4me1 (enhancer mark) cutoff



RPKM . (C) Density plot of H3K27ac (enhancer mark) cutoff RPKM . (D) Density plot of

short-short paired GRO-seq transcription (SSP) (enhancer mark) cutoff RPKM . (E) Density

plot of short-unpaired GRO-seq transcription (SUNP) ( enhancer mark) cutoff RPKM . (F)

Density plot of RNA-seq (gene expression) cutoff FPKM 



Figure S4: TFSEE defined by histone modifications identifies cell type-specific enhancers

and their cognate TFs that drive gene expression in pancreatic differentiation. (A)

Unsupervised hierarchical clustering of cell line normalized TFSEE scores shown in a heatmap

representation.



(B) Biaxial t-SNE clustering plot of cell type-normalized TFSEE scores showing evidence of three

distinct clusters, each point represents an individual TF. (C) Boxplots of normalized TFSEE score

for clusters identified in pancreatic differentiation. Bars marked with different letters are significantly

different from each other (Wilcoxon rank sum test, ). Number of TFs in each cluster are

in parenthesis. Cluster 1, TFs associated across pancreatic lineage Cluster 2, TFs associated with

pre-pancreatic lineage induction (hESC, DE and GT). Cluster 3, TFs associated with late-

pancreatic differentiation (FG and PE).



Figure S5: TFSEE-Predicted TFs, by histone modifications, are enriched in pre- and late-

pancreatic differentiation. (A-C) Box plots of normalized TF expression (panel A), enhancer

transcription (panel B), and gene expression for the nearest neighboring genes to active enhancers

(panel C) in pre- (cluster 2) and late-pancreatic (cluster 3) differentiation across the different cell



types. Bars marked with different letters are significantly different from each other (Wilcoxon rank

sum test). hESC (human embryonic stem cell); DE (definitive endoderm); GT (primitive gut tube);

FG (posterior foregut); PE (pancreatic endoderm). (A) TFs identified in cluster 2 by TFSEE show

equal expression across differentiation. While, cluster 3 highlights TFs highly expressed in FG and

PE. TF expression as measured by RNA-seq. Number of TFs in each cluster are in parenthesis. (

) (B) Enhancer transcription as measured by ChIP-seq (H3K27ac enrichment). Number

of enhancers in each cluster are in parenthesis. ( ). (C) Gene expression as measured

by RNA-seq. Number of genes in each cluster are in parenthesis. ( ). (D and E) Rank order

of TFs enriched in the Cluster 2 and the Cluster 3 identified using TFSEE. The top ten TFs in each

Cluster are noted.



Figure S6: TFSEE-Predicted TFs are enriched and depleted in Primitive Gut Tube during

pancreatic differentiation. (A-C) Box plots of normalized TF expression (panel A), enhancer

transcription (panel B), and gene expression for the nearest neighboring genes to active enhancers

(panel C) in depleted (cluster 1) and enriched (cluster 2) in primitive gut tube during pancreatic



differentiation across different cell types. Bars marked with different letters are significantly different

from each other (Wilcoxon rank sum test). hESC (human embryonic stem cell); DE (definitive

endoderm); GT (primitive gut tube); FG (posterior foregut); PE (pancreatic endoderm). (A) TF

expression as measured by RNA-seq. Number of TFs in each cluster are in parenthesis. (

) (B) Enhancer transcription as measured by GRO-seq. Number of enhancers in each

cluster are in parenthesis. ( ). (C) Gene expression as measured by RNA-seq. Number

of genes in each cluster are in parenthesis. ( ). (D and E) Rank order of TFs enriched in the

Cluster 1 and the Cluster 2 identified using TFSEE. The top five TFs in each Cluster are noted.



References

1. Epigenetic Priming of Enhancers Predicts Developmental Competence of hESC-Derived

Endodermal Lineage Intermediates

Allen Wang, Feng Yue, Yan Li, Ruiyu Xie, Thomas Harper, Nisha A. Patel, Kayla Muth, Jeffrey

Palmer, Yunjiang Qiu, Jinzhao Wang, … Maike Sander

Cell Stem Cell (2015-04) https://doi.org/10.1016/j.stem.2015.02.013

2. Transcriptional enhancers: from properties to genome-wide predictions

Daria Shlyueva, Gerald Stampfel, Alexander Stark

Nature Reviews Genetics (2014-03-11) https://doi.org/10.1038/nrg3682

3. The selection and function of cell type-specific enhancers

Sven Heinz, Casey E. Romanoski, Christopher Benner, Christopher K. Glass

Nature Reviews Molecular Cell Biology (2015-02-04) https://doi.org/10.1038/nrm3949

4. Progress and challenges in bioinformatics approaches for enhancer identification

Dimitrios Kleftogiannis, Panos Kalnis, Vladimir B. Bajic

Briefings in Bioinformatics (2015-12-03) https://doi.org/10.1093/bib/bbv101

5. An integrated encyclopedia of DNA elements in the human genomeNature (2012-09) 

https://doi.org/10.1038/nature11247

6. Integrative analysis of 111 reference human epigenomes

Anshul KundajeWouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen, Alireza Heravi-

Moussavi, Pouya Kheradpour, Zhizhuo Zhang, Jianrong Wang, … Manolis Kellis

Nature (2015-02) https://doi.org/10.1038/nature14248

7. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature

sequencing (MPSS)

G. E. Crawford

Genome Research (2005-12-12) https://doi.org/10.1101/gr.4074106

8. Patterns of regulatory activity across diverse human cell types predict tissue identity,

transcription factor binding, and long-range interactions

N. C. Sheffield, R. E. Thurman, L. Song, A. Safi, J. A. Stamatoyannopoulos, B. Lenhard, G. E.

Crawford, T. S. Furey

Genome Research (2013-03-12) https://doi.org/10.1101/gr.152140.112

9. Discovery of Transcription Factors and Regulatory Regions Driving In Vivo Tumor

Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling

Kristofer Davie, Jelle Jacobs, Mardelle Atkins, Delphine Potier, Valerie Christiaens, Georg Halder,

https://doi.org/10.1016/j.stem.2015.02.013
https://doi.org/10.1038/nrg3682
https://doi.org/10.1038/nrm3949
https://doi.org/10.1093/bib/bbv101
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature14248
https://doi.org/10.1101/gr.4074106
https://doi.org/10.1101/gr.152140.112


Stein Aerts

PLOS Genetics (2015-02-13) https://doi.org/10.1371/journal.pgen.1004994

10. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers

in the human genome

Nathaniel D Heintzman, Rhona K Stuart, Gary Hon, Yutao Fu, Christina W Ching, R David

Hawkins, Leah O Barrera, Sara Van Calcar, Chunxu Qu, Keith A Ching, … Bing Ren

Nature Genetics (2007-02-04) https://doi.org/10.1038/ng1966

11. Histone modifications at human enhancers reflect global cell-type-specific gene

expression

Nathaniel D. Heintzman, Gary C. Hon, R. David Hawkins, Pouya Kheradpour, Alexander Stark,

Lindsey F. Harp, Zhen Ye, Leonard K. Lee, Rhona K. Stuart, Christina W. Ching, … Bing Ren

Nature (2009-03-18) https://doi.org/10.1038/nature07829

12. Distinct and Predictive Histone Lysine Acetylation Patterns at Promoters, Enhancers,

and Gene Bodies

Nisha Rajagopal, Jason Ernst, Pradipta Ray, Jie Wu, Michael Zhang, Manolis Kellis, Bing Ren

G3&#58; Genes|Genomes|Genetics (2014-08-12) https://doi.org/10.1534/g3.114.013565

13. Effects on the transcriptome upon deletion of a distal element cannot be predicted by

the size of the H3K27Ac peak in human cells

Yu Gyoung Tak, Yuli Hung, Lijing Yao, Matthew R. Grimmer, Albert Do, Mital S. Bhakta, Henriette

O’Geen, David J. Segal, Peggy J. Farnham

Nucleic Acids Research (2016-01-06) https://doi.org/10.1093/nar/gkv1530

14. Occupancy by key transcription factors is a more accurate predictor of enhancer activity

than histone modifications or chromatin accessibility

Nergiz Dogan, Weisheng Wu, Christapher S Morrissey, Kuan-Bei Chen, Aaron Stonestrom, Maria

Long, Cheryl A Keller, Yong Cheng, Deepti Jain, Axel Visel, … Ross C Hardison

Epigenetics & Chromatin (2015-04-23) https://doi.org/10.1186/s13072-015-0009-5

15. A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers

Francesca De Santa, Iros Barozzi, Flore Mietton, Serena Ghisletti, Sara Polletti, Betsabeh

Khoramian Tusi, Heiko Muller, Jiannis Ragoussis, Chia-Lin Wei, Gioacchino Natoli

PLoS Biology (2010-05-11) https://doi.org/10.1371/journal.pbio.1000384

16. Architectural and Functional Commonalities between Enhancers and Promoters

Tae-Kyung Kim, Ramin Shiekhattar

Cell (2015-08) https://doi.org/10.1016/j.cell.2015.08.008

17. A Rapid, Extensive, and Transient Transcriptional Response to Estrogen Signaling in

Breast Cancer Cells

https://doi.org/10.1371/journal.pgen.1004994
https://doi.org/10.1038/ng1966
https://doi.org/10.1038/nature07829
https://doi.org/10.1534/g3.114.013565
https://doi.org/10.1093/nar/gkv1530
https://doi.org/10.1186/s13072-015-0009-5
https://doi.org/10.1371/journal.pbio.1000384
https://doi.org/10.1016/j.cell.2015.08.008


Nasun Hah, Charles G. Danko, Leighton Core, Joshua J. Waterfall, Adam Siepel, John T. Lis,

W. Lee Kraus

Cell (2011-05) https://doi.org/10.1016/j.cell.2011.03.042

18. Tissue-Specific RNA Expression Marks Distant-Acting Developmental Enhancers

Han Wu, Alex S. Nord, Jennifer A. Akiyama, Malak Shoukry, Veena Afzal, Edward M. Rubin, Len A.

Pennacchio, Axel Visel

PLoS Genetics (2014-09-04) https://doi.org/10.1371/journal.pgen.1004610

19. Reprogramming transcription by distinct classes of enhancers functionally defined by

eRNA

Dong Wang, Ivan Garcia-Bassets, Chris Benner, Wenbo Li, Xue Su, Yiming Zhou, Jinsong Qiu,

Wen Liu, Minna U. Kaikkonen, Kenneth A. Ohgi, … Xiang-Dong Fu

Nature (2011-05-15) https://doi.org/10.1038/nature10006

20. Enhancer transcripts mark active estrogen receptor binding sites

N. Hah, S. Murakami, A. Nagari, C. G. Danko, W. L. Kraus

Genome Research (2013-05-01) https://doi.org/10.1101/gr.152306.112

21. Analysis of nascent RNA identifies a unified architecture of initiation regions at

mammalian promoters and enhancers

Leighton J Core, André L Martins, Charles G Danko, Colin T Waters, Adam Siepel, John T Lis

Nature Genetics (2014-11-10) https://doi.org/10.1038/ng.3142

22. groHMM: a computational tool for identifying unannotated and cell type-specific

transcription units from global run-on sequencing data

Minho Chae, Charles G. Danko, W. Lee Kraus

BMC Bioinformatics (2015-07-16) https://doi.org/10.1186/s12859-015-0656-3

23. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation

Wenbo Li, Dimple Notani, Qi Ma, Bogdan Tanasa, Esperanza Nunez, Aaron Yun Chen, Daria

Merkurjev, Jie Zhang, Kenneth Ohgi, Xiaoyuan Song, … Michael G. Rosenfeld

Nature (2013-06) https://doi.org/10.1038/nature12210

24. TNFα Signaling Exposes Latent Estrogen Receptor Binding Sites to Alter the Breast

Cancer Cell Transcriptome

Hector L. Franco, Anusha Nagari, W. Lee Kraus

Molecular Cell (2015-04) https://doi.org/10.1016/j.molcel.2015.02.001

25. VISTA Enhancer Browser–a database of tissue-specific human enhancers

A. Visel, S. Minovitsky, I. Dubchak, L. A. Pennacchio

Nucleic Acids Research (2007-01-03) https://doi.org/10.1093/nar/gkl822

https://doi.org/10.1016/j.cell.2011.03.042
https://doi.org/10.1371/journal.pgen.1004610
https://doi.org/10.1038/nature10006
https://doi.org/10.1101/gr.152306.112
https://doi.org/10.1038/ng.3142
https://doi.org/10.1186/s12859-015-0656-3
https://doi.org/10.1038/nature12210
https://doi.org/10.1016/j.molcel.2015.02.001
https://doi.org/10.1093/nar/gkl822


26. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a

massively parallel reporter assay

P. Kheradpour, J. Ernst, A. Melnikov, P. Rogov, L. Wang, X. Zhang, J. Alston, T. S. Mikkelsen, M.

Kellis

Genome Research (2013-03-19) https://doi.org/10.1101/gr.144899.112

27. Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq

C. D. Arnold, D. Gerlach, C. Stelzer, L. M. Boryn, M. Rath, A. Stark

Science (2013-01-17) https://doi.org/10.1126/science.1232542

28. High-throughput functional testing of ENCODE segmentation predictions

Jamie C. Kwasnieski, Christopher Fiore, Hemangi G. Chaudhari, Barak A. Cohen

Genome Research (2014-07-17) https://doi.org/10.1101/gr.173518.114

29. Architecture of the human regulatory network derived from ENCODE data

Mark B. Gerstein, Anshul Kundaje, Manoj Hariharan, Stephen G. Landt, Koon-Kiu Yan, Chao

Cheng, Xinmeng Jasmine Mu, Ekta Khurana, Joel Rozowsky, Roger Alexander, … Michael Snyder

Nature (2012-09) https://doi.org/10.1038/nature11245

30. A census of human transcription factors: function, expression and evolution

Juan M. Vaquerizas, Sarah K. Kummerfeld, Sarah A. Teichmann, Nicholas M. Luscombe

Nature Reviews Genetics (2009-04) https://doi.org/10.1038/nrg2538

31. DNA-dependent formation of transcription factor pairs alters their binding specificity

Arttu Jolma, Yimeng Yin, Kazuhiro R. Nitta, Kashyap Dave, Alexander Popov, Minna Taipale,

Martin Enge, Teemu Kivioja, Ekaterina Morgunova, Jussi Taipale

Nature (2015-11) https://doi.org/10.1038/nature15518

32. DNA-Binding Specificities of Human Transcription Factors

Arttu Jolma, Jian Yan, Thomas Whitington, Jarkko Toivonen, Kazuhiro R. Nitta, Pasi Rastas,

Ekaterina Morgunova, Martin Enge, Mikko Taipale, Gonghong Wei, … Jussi Taipale

Cell (2013-01) https://doi.org/10.1016/j.cell.2012.12.009

33. JASPAR 2016: a major expansion and update of the open-access database of

transcription factor binding profiles

Anthony Mathelier, Oriol Fornes, David J. Arenillas, Chih-yu Chen, Grégoire Denay, Jessica Lee,

Wenqiang Shi, Casper Shyr, Ge Tan, Rebecca Worsley-Hunt, … Wyeth W. Wasserman

Nucleic Acids Research (2015-11-03) https://doi.org/10.1093/nar/gkv1176

34. Quantifying similarity between motifs

Shobhit Gupta, John A Stamatoyannopoulos, Timothy L Bailey, William Noble

Genome Biology (2007) https://doi.org/10.1186/gb-2007-8-2-r24

https://doi.org/10.1101/gr.144899.112
https://doi.org/10.1126/science.1232542
https://doi.org/10.1101/gr.173518.114
https://doi.org/10.1038/nature11245
https://doi.org/10.1038/nrg2538
https://doi.org/10.1038/nature15518
https://doi.org/10.1016/j.cell.2012.12.009
https://doi.org/10.1093/nar/gkv1176
https://doi.org/10.1186/gb-2007-8-2-r24


35. Functional analysis of transcription factor binding sites in human promoters

Troy W Whitfield, Jie Wang, Patrick J Collins, E Christopher Partridge, Shelley Aldred, Nathan D

Trinklein, Richard M Myers, Zhiping Weng

Genome Biology (2012) https://doi.org/10.1186/gb-2012-13-9-r50

36. Dynamic Chromatin Remodeling Mediated by Polycomb Proteins Orchestrates

Pancreatic Differentiation of Human Embryonic Stem Cells

Ruiyu Xie, Logan J. Everett, Hee-Woong Lim, Nisha A. Patel, Jonathan Schug, Evert Kroon,

Olivia G. Kelly, Allen Wang, Kevin A. D’Amour, Allan J. Robins, … Maike Sander

Cell Stem Cell (2013-02) https://doi.org/10.1016/j.stem.2012.11.023

37. A Chromatin Landmark and Transcription Initiation at Most Promoters in Human Cells

Matthew G. Guenther, Stuart S. Levine, Laurie A. Boyer, Rudolf Jaenisch, Richard A. Young

Cell (2007-07) https://doi.org/10.1016/j.cell.2007.05.042

38. GENCODE: The reference human genome annotation for The ENCODE Project

J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, B. L. Aken, D.

Barrell, A. Zadissa, S. Searle, … T. J. Hubbard

Genome Research (2012-09-01) https://doi.org/10.1101/gr.135350.111

39. Chromatin-state discovery and genome annotation with ChromHMM

Jason Ernst, Manolis Kellis

Nature Protocols (2017-11-09) https://doi.org/10.1038/nprot.2017.124

40. Predicting enhancer transcription and activity from chromatin modifications

Yun Zhu, Lin Sun, Zhao Chen, John W. Whitaker, Tao Wang, Wei Wang

Nucleic Acids Research (2013-09-12) https://doi.org/10.1093/nar/gkt826

41. Nuclear organization of active and inactive chromatin domains uncovered by

chromosome conformation capture–on-chip (4C)

Marieke Simonis, Petra Klous, Erik Splinter, Yuri Moshkin, Rob Willemsen, Elzo de Wit, Bas van

Steensel, Wouter de Laat

Nature Genetics (2006-10-08) https://doi.org/10.1038/ng1896

42. ChIA-PET analysis of transcriptional chromatin interactions

Jingyao Zhang, Huay Mei Poh, Su Qin Peh, Yee Yen Sia, Guoliang Li, Fabianus Hendriyan

Mulawadi, Yufen Goh, Melissa J. Fullwood, Wing-Kin Sung, Xiaoan Ruan, Yijun Ruan

Methods (2012-11) https://doi.org/10.1016/j.ymeth.2012.08.009

43. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C

Borbala Mifsud, Filipe Tavares-Cadete, Alice N Young, Robert Sugar, Stefan Schoenfelder, Lauren

Ferreira, Steven W Wingett, Simon Andrews, William Grey, Philip A Ewels, … Cameron S Osborne

Nature Genetics (2015-05-04) https://doi.org/10.1038/ng.3286

https://doi.org/10.1186/gb-2012-13-9-r50
https://doi.org/10.1016/j.stem.2012.11.023
https://doi.org/10.1016/j.cell.2007.05.042
https://doi.org/10.1101/gr.135350.111
https://doi.org/10.1038/nprot.2017.124
https://doi.org/10.1093/nar/gkt826
https://doi.org/10.1038/ng1896
https://doi.org/10.1016/j.ymeth.2012.08.009
https://doi.org/10.1038/ng.3286


44. The histone gene activator HINFP is a nonredundant cyclin E/CDK2 effector during early

embryonic cell cycles

R. Xie, R. Medina, Y. Zhang, S. Hussain, J. Colby, P. Ghule, S. Sundararajan, M. Keeler, L.-J. Liu,

M. van der Deen, … G. S. Stein

Proceedings of the National Academy of Sciences (2009-07-09) https://doi.org/10.1073/

pnas.0905651106

45. Nuclear receptor regulation of stemness and stem cell differentiation

Yangsik Jeong, David J. Mangelsdorf

Experimental and Molecular Medicine (2009) https://doi.org/10.3858/emm.2009.41.8.091

46. Zic3 Is Required for Maintenance of Pluripotency in Embryonic Stem Cells

Linda Shushan Lim, Yuin-Han Loh, Weiwei Zhang, Yixun Li, Xi Chen, Yinan Wang, Manjiri Bakre,

Huck-Hui Ng, Lawrence W. Stanton

Molecular Biology of the Cell (2007-04) https://doi.org/10.1091/mbc.e06-07-0624

47. Sp1-like transcription factors are regulators of embryonic development in vertebrates

Chengtian Zhao, Anming Meng

Development, Growth and Differentiation (2005-05) https://doi.org/10.1111/

j.1440-169x.2005.00797.x

48. Role of the Onecut transcription factors in pancreas morphogenesis and in pancreatic

and enteric endocrine differentiation

Vinciane Vanhorenbeeck, Marjorie Jenny, Jean-François Cornut, Gérard Gradwohl, Frédéric P.

Lemaigre, Guy G. Rousseau, Patrick Jacquemin

Developmental Biology (2007-05) https://doi.org/10.1016/j.ydbio.2007.02.027

49. Critical Role of Egr Transcription Factors in Regulating Insulin Biosynthesis, Blood

Glucose Homeostasis, and Islet Size

Isabelle Müller, Oliver G. Rössler, Christine Wittig, Michael D. Menger, Gerald Thiel

Endocrinology (2012-07) https://doi.org/10.1210/en.2012-1064

50. Microphthalmia Transcription Factor Regulates Pancreatic β-Cell Function

Magdalena A. Mazur, Marcus Winkler, Elvira Ganić, Jesper K. Colberg, Jenny K. Johansson,

Hedvig Bennet, Malin Fex, Ulrike A. Nuber, Isabella Artner

Diabetes (2013-04-22) https://doi.org/10.2337/db12-1464

51. The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell

proliferation and function in mice

Jason M. Spaeth, Chad S. Hunter, Lauren Bonatakis, Min Guo, Catherine A. French, Ian Slack,

Manami Hara, Simon E. Fisher, Jorge Ferrer, Edward E. Morrisey, … Roland Stein

Diabetologia (2015-05-29) https://doi.org/10.1007/s00125-015-3635-3

https://doi.org/10.1073/pnas.0905651106
https://doi.org/10.1073/pnas.0905651106
https://doi.org/10.3858/emm.2009.41.8.091
https://doi.org/10.1091/mbc.e06-07-0624
https://doi.org/10.1111/j.1440-169x.2005.00797.x
https://doi.org/10.1111/j.1440-169x.2005.00797.x
https://doi.org/10.1016/j.ydbio.2007.02.027
https://doi.org/10.1210/en.2012-1064
https://doi.org/10.2337/db12-1464
https://doi.org/10.1007/s00125-015-3635-3


52. Enhancer transcription reveals subtype-specific gene expression programs controlling

breast cancer pathogenesis

Hector L. Franco, Anusha Nagari, Venkat S. Malladi, Wenqian Li, Yuanxin Xi, Dana Richardson,

Kendra L. Allton, Kaori Tanaka, Jing Li, Shino Murakami, … W. Lee Kraus

Genome Research (2017-12-22) https://doi.org/10.1101/gr.226019.117

53. FOXA2 Is Required for Enhancer Priming during Pancreatic Differentiation

Kihyun Lee, Hyunwoo Cho, Robert W. Rickert, Qing V. Li, Julian Pulecio, Christina S. Leslie,

Danwei Huangfu

Cell Reports (2019-07) https://doi.org/10.1016/j.celrep.2019.06.034

54. GEO

Gene Expression Omnibus

https://www.ncbi.nlm.nih.gov/geo/

55. ArrayExpress

ArrayExpress – functional genomics data

http://www.ebi.ac.uk/arrayexpress/

56. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

Ben Langmead, Cole Trapnell, Mihai Pop, Steven L Salzberg

Genome Biology (2009) https://doi.org/10.1186/gb-2009-10-3-r25

57. The Sequence Alignment/Map format and SAMtools

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, 

Bioinformatics (2009-06-08) https://doi.org/10.1093/bioinformatics/btp352

58. Picard

Broad Institute

GitHub http://broadinstitute.github.io/picard/

59. BEDTools: a flexible suite of utilities for comparing genomic features

Aaron R. Quinlan, Ira M. Hall

Bioinformatics (2010-01-28) https://doi.org/10.1093/bioinformatics/btq033

60. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia

S. G. Landt, G. K. Marinov, A. Kundaje, P. Kheradpour, F. Pauli, S. Batzoglou, B. E. Bernstein, P.

Bickel, J. B. Brown, P. Cayting, … M. Snyder

Genome Research (2012-09-01) https://doi.org/10.1101/gr.136184.111

61. Identifying ChIP-seq enrichment using MACS

Jianxing Feng, Tao Liu, Bo Qin, Yong Zhang, Xiaole Shirley Liu

Nature Protocols (2012-08-30) https://doi.org/10.1038/nprot.2012.101

https://doi.org/10.1101/gr.226019.117
https://doi.org/10.1016/j.celrep.2019.06.034
https://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/btp352
http://broadinstitute.github.io/picard/
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1101/gr.136184.111
https://doi.org/10.1038/nprot.2012.101


62. STAR: ultrafast universal RNA-seq aligner

Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha,

Philippe Batut, Mark Chaisson, Thomas R. Gingeras

Bioinformatics (2012-10-25) https://doi.org/10.1093/bioinformatics/bts635

63. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference

genome

Bo Li, Colin N Dewey

BMC Bioinformatics (2011-08-04) https://doi.org/10.1186/1471-2105-12-323

64. FASTX-Toolkit

Hannon Lab

http://hannonlab.cshl.edu/fastx_toolkit/

65. Fast and accurate short read alignment with Burrows-Wheeler transform

H. Li, R. Durbin

Bioinformatics (2009-05-18) https://doi.org/10.1093/bioinformatics/btp324

66. Seaborn: V0.7.1 (June 2016)

Michael Waskom, Olga Botvinnik, Drewokane, Paul Hobson,, David, Yaroslav Halchenko, Saulius

Lukauskas, John B. Cole, Jordi Warmenhoven, Julian De Ruiter, … Antony Lee

Zenodo (2016-06-05) https://doi.org/10.5281/zenodo.54844

67. MakeGenecodeTSS

Sarah Djebali

GitHub https://github.com/sdjebali/MakeGencodeTSS

68. MEME SUITE: tools for motif discovery and searching

T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li, W. S. Noble

Nucleic Acids Research (2009-05-20) https://doi.org/10.1093/nar/gkp335

69. MEME-ChIP: motif analysis of large DNA datasets

Philip Machanick, Timothy L. Bailey

Bioinformatics (2011-04-12) https://doi.org/10.1093/bioinformatics/btr189

70. groHMM

Minho Chae Charles G. Danko

Bioconductor (2017) https://doi.org/10.18129/b9.bioc.grohmm

71. Visualizing data using t-SNE

Laurens van der Maaten, Geoffrey Hinton

Journal of Machine Learning Research 9 (2008-11)

https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1186/1471-2105-12-323
http://hannonlab.cshl.edu/fastx_toolkit/
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.5281/zenodo.54844
https://github.com/sdjebali/MakeGencodeTSS
https://doi.org/10.1093/nar/gkp335
https://doi.org/10.1093/bioinformatics/btr189
https://doi.org/10.18129/b9.bioc.grohmm


72. Scikit-learn: Machine Learning in Python

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier

Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, … Édouard Duchesnay

arXiv (2012-01-02) https://arxiv.org/abs/1201.0490v4

73. Visualizing Large-scale and High-dimensional Data

Jian Tang, Jingzhou Liu, Ming Zhang, Qiaozhu Mei

Proceedings of the 25th International Conference on World Wide Web - WWW ’16 (2016) https://

doi.org/10.1145/2872427.2883041

74. Scikit-Learn: 0.17.1 Release Tag For Doi

Olivier Grisel, Andreas Mueller, Fabian Pedregosa,, Lars, Alexandre Gramfort, Gilles Louppe, Peter

Prettenhofer, Mathieu Blondel, Vlad Niculae, Arnaud Joly, … Maheshakya Wijewardena

Zenodo (2016-04-17) https://doi.org/10.5281/zenodo.49911

75. Matplotlib: A 2D Graphics Environment

John D. Hunter

Computing in Science & Engineering (2007) https://doi.org/10.1109/mcse.2007.55

76. Matplotlib/Matplotlib V2.0.2

Michael Droettboom, Thomas A Caswell, John Hunter, Eric Firing, Jens Hedegaard Nielsen, Nelle

Varoquaux, Benjamin Root, Phil Elson, Darren Dale, Jae-Joon Lee, … Nikita Kniazev

Zenodo (2017-05-10) https://doi.org/10.5281/zenodo.573577

https://arxiv.org/abs/1201.0490v4
https://doi.org/10.1145/2872427.2883041
https://doi.org/10.1145/2872427.2883041
https://doi.org/10.5281/zenodo.49911
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.5281/zenodo.573577

	Total Functional Score of Enhancer Elements Identifies Lineage-Specific Enhancers that Drive Differentiation of Pancreatic Cells
	Authors
	Abstract
	Introduction
	Results
	Unbiased Identification of Enhancers during Pancreatic Differentiation
	The TFSEE model
	TFSEE identifies lineage-specific enhancers and their cognate TFs during pancreatic differentiation

	Discussion
	Conclusions
	Acknowledgments
	Material and Methods
	Genomic Data Curation
	Analysis of ChIP-seq Data Sets
	Analysis of RNA-seq Data Sets
	Analysis of GRO-seq Data
	Kernel Density
	Defining Transcription Start Sites and Promoters
	Enhancer calling by ChIP-seq
	Calling Active Enhancers.
	Motif Analyses.

	Enhancer calling by GRO-seq
	Transcript calling.
	Calling Enhancer Transcripts.
	Motif Analyses.

	Generating Heatmaps and Clusters
	Nearest Neighboring Gene Analyses and Box Plots

	Figures and Figure Legends
	References


